**Answer**
The two statements are equivalent.
The implication “\(p\) is true only if \(q\) is true” is the same as “\(p\) is false or \(q\) is true”.
So
\[
p \text{ only if } q \;\;\Longleftrightarrow\;\; \neg p \lor q .
\]
---
**Proof**
We prove the equivalence by showing that each side implies the other.
---
### 1. \(p \text{ only if } q \;\Longrightarrow\; \neg p \lor q\)
Assume \(p \text{ only if } q\).
By definition of “only if”, this means
\[
p \;\Longrightarrow\; q .
\]
Now consider the truth of \(p\).
*If \(p\) is true*, the implication forces \(q\) to be true.
*If \(p\) is false*, the implication is automatically satisfied, and \(\neg p\) is true.
Thus in every case either \(\neg p\) is true or \(q\) is true; i.e.
\(\neg p \lor q\) holds.
---
### 2. \(\neg p \lor q \;\Longrightarrow\; p \text{ only if } q\)
Assume \(\neg p \lor q\).
We must show that \(p \;\Longrightarrow\; q\).
Take an arbitrary assignment of truth values to \(p\) and \(q\).
*If \(\neg p\) is true*, then \(p\) is false, so the implication \(p \;\Longrightarrow\; q\) is true (a false antecedent makes any implication true).
*If \(q\) is true*, the implication is again true regardless of the value of \(p\).
Since \(\neg p \lor q\) guarantees that at least one of these two situations occurs, the implication \(p \;\Longrightarrow\; q\) holds in all possible assignments.
Hence \(p \text{ only if } q\) is true.
---
### 3. Conclusion
We have shown
\[
p \text{ only if } q \;\Longrightarrow\; \neg p \lor q
\quad\text{and}\quad
\neg p \lor q \;\Longrightarrow\; p \text{ only if } q .
\]
Therefore the two statements are logically equivalent:
\[
p \text{ only if } q \;\;\Longleftrightarrow\;\; \neg p \lor q .
\]
---
**Remark**
The equivalence can also be verified by a truth‑table.
The table for \(p \text{ only if } q\) (i.e. \(p \rightarrow q\)) and for \(\neg p \lor q\) is identical, confirming the equivalence.
ただひたすらに、自分が思った技術情報をアップ書きなぐります。たまにメモみたいな物をあります。話題の事とかも。
コメント
コメントを投稿